Low Concentration of Silver Nanoparticles Not Only Enhances the Activity of Horseradish Peroxidase but Alter the Structure Also
نویسندگان
چکیده
Chemical synthesis of Ag-NPs was carried out using reduction method. The reduction mechanistic approach of silver ions was found to be a basic clue for the formation of the Ag-NPs. The nanoparticles were characterized by UV-vis, FT-IR and TEM analysis. We had designed some experiments in support of our hypothesis, "low concentrations of novel nanoparticles (silver and gold) increases the activity of plant peroxidases and alter their structure also", we had used Ag-NPs and HRP as models. The immobilization/interaction experiment had demonstrated the specific concentration range of the Ag-NPs and within this range, an increase in HRP activity was reported. At 0.08 mM concentration of Ag-NPs, 50% increase in the activity yield was found. The U.V-vis spectra had demonstrated the increase in the absorbance of HRP within the reported concentration range (0.06-0.12 mM). Above and below this concentration range there was a decrease in the activity of HRP. The results that we had found from the fluorescence spectra were also in favor of our hypothesis. There was a maximum increase in ellipticity and α-helix contents in the presence of 0.08 mM concentration of Ag-NPs, demonstrated by circular dichroism (CD) spectra. Finally, incubation of a plant peroxidase, HRP with Ag-NPs, within the reported concentration range not only enhances the activity but also alter the structure.
منابع مشابه
In Vitro Study of Acriflavine Interaction with Horseradish Peroxidase C
Acriflavine (3,6-diaminoacridine) is an anticeptic drug developed in 1912. Previous research has focused on investigation of the intercalating features of acriflavine, but little is known about its interaction with proteins. Drug-receptor interaction is of major interest in clinical science. The aim of the present study was to evaluate the ability of acriflavine to induce alterations in conform...
متن کاملEvaluation of oxidative stress biomarkers and acetylcholinesterase activity in Gammarus pseudosyriacus exposed to nanosilver
The extensive use of nanoparticles in a variety of applications has raised great concerns regarding theirbiological effects and environmental fate. Silver nanoparticle, often referred to as nanosilver (n-Ag), maycause health problems because of its wide and ever growing use in many applications. n-Ag is used intreatments of wounds, disinfection of water and/or air and coatings textiles. n-Ag is...
متن کاملGreen synthesis of silver nanoparticle using echinops extract and its antibacterial activity
Objective(s): Silver nanoparticles (Ag NPs) are not only specific physical and chemical properties but also are considered for their antibacterial activity and ecofriendly.Materials and Methods:In this study a simple, cost effective biologically method for Ag+reducing to Ag NPs using Echinops extractas a stabilizer, and reducing agent.Ag NPs were analyzed using UV-Vis spectrometry,TEM, XRD and ...
متن کاملRemoval of Phenols with Encapsulated Horseradish Peroxidase in Calcium Alginate
Horseradish peroxidase was encapsulated in calcium alginate for the purpose of phenol removal. Considering enzyme encapsulation efficiency, retention activity and enzyme leakage of the capsules, the best gelation condition was found to be 1 % w/v of sodium alginate solution and 5.5 % w/v of calcium chloride hexahydrate. Upon immobilization, pH profile of enzyme activity changes as it shows ...
متن کاملStandardizing the Bactericidal Activities of Silver Nanoparticles Made By Electrochemical Reduction and Comparing It with Deconex 53 Instrument
Silver nanoparticles have proved to possess significant antibacterial properties. Nanosilver produced by electrochemical reduction stabilized by cellulose derivatives, has been evaluated by European standards (CEN TC 216) in order to find out whether they could be applied in food, industrial, domestic and institutional areas as a suitable disinfectant. Moreover, bactericidal activity of nanosil...
متن کامل